Phase-field fracture: past successes, current issues

Blaise Bourdin

https://www.math.mcmaster.ca/bourdin bourdin@mcmaster.ca

Department of Mathematics & Statistics

McMaster University

Hamilton, ON Canada

UGA—Matherials Apr. 25, 2023

Fracture Mechanics

FIU pedestrian bridge, 2018

Beaufort sea, 2013 (NASA earth observer)

Glass "cutting"

Oil Painting (Danish Royal Academy)

Francfort and Marigo's Variational Approach to Fracture

Modern view of Griffith's theory:

Displacement field u and crack set Γ given as unilateral minimizers of a free-discontinuity energy:

$$\mathscr{E}(u,\Gamma) := \int_{\Omega \setminus \Gamma} W(\mathbf{e}(u)) \, dx + G_c \mathscr{H}^{n-1}(\Gamma)$$

amongst all admissible displacements fields u(t) and all crack sets $\Gamma(t) \nearrow t$.

 $W\left(\mathbf{e}(u)\right) := \frac{1}{2}\mathbf{A}\mathbf{e}(u)\cdot\mathbf{e}(u)$: strain energy density, \mathbf{B}^{u} e(u): linearized strain,

 G_c : fracture toughness, \mathcal{H}^{n-1} : n-1—dimensional Hausdorff measure.

Variational phase-field approximation

Francfort and Marigo's variational view of Griffith's criterion:

$$\mathscr{E}(u,\Gamma) := \int_{\Omega \setminus \Gamma} W(e(u)) \, dx + G_c \mathscr{H}^{n-1}(\Gamma), \ W(e(u)) := \frac{1}{2} \mathrm{Ae}(u) \cdot e(u)$$

Phase-field approximation: $\ell > 0$, $0 \le \alpha \le 1$:

$$\mathcal{E}_{\ell}(u,\alpha) := \int_{\Omega} a(\alpha) W(\mathbf{e}(u)) \, dx + \frac{G_c}{4c_w} \int_{\Omega} \frac{w(\alpha)}{\ell} + \ell |\nabla \alpha|^2 \, dx|$$

$$a(0) = 1$$
, $a(1) = 0$, $w(0) = 0$, $w(1) = 1$, $c_w = \int_0^1 \sqrt{w(s)} \, ds$

Unilateral global minimization:

$$(u_i, \alpha_i) = \arg \min_{v, \alpha_{i-1} \le \beta \le 1} \mathscr{E}_{\ell}(v, \beta)$$

 Γ -convergence of \mathscr{C}_{ℓ} to \mathscr{C} + compactness of $\mathscr{C}_{\ell} \Rightarrow$ convergence of minimizers.

$$AT_1: \mathscr{E}_{\ell}(u,\alpha) := \int_{\Omega} (1-\alpha)^2 W(\mathbf{e}(u)) \, dx + \frac{3G_c}{8} \int_{\Omega} \frac{\alpha}{\ell} + \ell |\nabla \alpha|^2 \, dx$$

Numerical implementation: mef90/vDef

Fortran90-2008, unstructured 2D/3D parallel finite elements.

- PETSC solvers, mesh management, I/O.
- Many variants of AT models, unilateral contact models.
- Perfect plasticity coupled with damage / fracture.
- Steady state / transient heat transfer coupled (one way) to fracture.

Main solver: time discrete alternate minimization (block Gauss-Seidel).

• Globally stable, monotonically decreasing energy, convergence to a critical point.

Other solvers: semi implicit gradient flows, quasi-Newton solvers, backtracking

algorithm (optimality conditions in trajectory space).

Open source (BSD license) since 2014:

DOI:10.5281/zenodo.4290835

https://github.com/bourdin/mef90

dockerhub: bourdin/mef90ubuntumpicho

Variational Phase-Field fracture

Pham Ravi-Chandar IJF, 2016

Variational Phase-Field fracture

Brodnik et Al JAM '20

B Chukwudozie Yoshioka SPE ATCE '12

B-Maurini-Marigo-Sicsic, PRL, '14

Strength vs. toughness in Griffith theory

Crack nucleation is governed by strength, propagation is governed by toughness.

Griffith's formalism cannot account for both.

Singularity near a re-entrant corner in mode-I:

•
$$u(r,\theta) = \sigma_{\infty} \mathcal{O}\left(r^{\lambda(\omega)}\right)$$

•
$$\sigma_{\theta\theta}(r,\theta=0) = \sigma_{\infty}\mathcal{O}\left(r^{\lambda(\omega)-1}\right)$$

•
$$\mathscr{E}(\rho) = \sigma_{\infty}^2 \mathcal{O}\left(\rho^{2\lambda(\omega)}\right)$$

Stability of a *infinitesimal* crack increment:

• Nucleation *only* possible if $\lambda(\omega) = 1/2$ ($\omega = 0$).

Strength-based nucleation criterion:

- Nucleation for any load $\sigma_{\infty} > 0$ unless $\omega < \pi/2$.
- No localization if $\omega = \pi/2$ (no corner).

Nucleation in AT₁ (Tanné et al *JMPS*, 2018)

Nucleation at a V-notch

Nucleation in AT₁ (Tanné et al *JMPS*, 2018)

Nucleation at a V-notch

Nucleation in AT₁ (1D)

AT1 energy in 1D:

$$\mathcal{E}_{\ell}(u,\alpha) := \frac{1}{2} \int_{0}^{L} (1-\alpha)^{2} E(u')^{2} dx + \frac{3G_{c}}{8} \int_{0}^{L} \frac{\alpha}{\ell} + \ell(\alpha') |^{2} dx$$

First order necessary conditions for optimality:

With respect to *u*:

$$\left[(1 - \alpha)^2 E u' \right]' = 0.$$

With respect to α :

$$\begin{cases} -(1-\alpha)E(u')^2 + \frac{3G_c}{8} \left(\frac{1}{\ell} - 2\ell\alpha''\right) & = 0 \text{ if } \alpha = \alpha_{i-1} \\ & \leq 0 \text{ if } \alpha = 1 \end{cases}$$

Nucleation in AT₁ (1D)

Solutions of the NCO (cf. Pham et al JMPS 2011, Meccanica 2016, ...):

Elastic branch: $u_t(x) = tx$, $\alpha_t(t, x) = 0$, only if $t \le t_e := \sqrt{\frac{3G_c}{8E\ell}}$.

Homogeneous damage: $u_t(x) = tx$, $\alpha_t(x) = 1 - \frac{3G_c}{8\ell E t^2}$, only if $t \ge t_e$.

Partially localized: $\alpha_t(x)$ smooth, non-constant, $\max_x \alpha_t(x) > 0$.

Fully localized: $u_t(x)$ piecewise constant, $\alpha_t(x)$ optimal profile for AT₁:

$$\alpha_t(x) = \begin{cases} \left(\frac{|x - x_0|}{2\ell} - 1\right)^2 & \text{if } |x - x_0| \le 2\ell, \\ 0 & \text{otherwise.} \end{cases}$$

Nucleation in AT₁ (1D)

Stability analysis: (cf. Pham et al JMPS 2011, Meccanica 2016, ...):

Elastic branch is *stable* if $t \le t_c = t_e := \sqrt{\frac{3G_c}{8E\ell}}$, $\sigma_c = \sigma_e = \sqrt{\frac{3G_cE}{8\ell}}$.

Homogeneous damage, partially localized branch are unstable.

Fully localized branch is stable.

Link internal length and tensile strength: $\mathcal{E} = \frac{3}{8} \frac{G_c E}{\sigma_c^2} = \frac{3}{8} \frac{K_{I,c}^2}{\sigma_c^2}$

Nucleation in AT₁ (Tanné et al *JMPS*, 2018)

Stress or energy criterion?

First order necessary conditions for optimality:

$$-\nabla \cdot \left[(1 - \alpha)^2 \operatorname{Ae}(u) \right] = 0 + \operatorname{BC}.$$

$$\begin{cases} -(1-\alpha)W(\mathrm{e}(u)) + \frac{3G_c}{8} \left(\frac{1}{\ell} - 2\ell\Delta\alpha\right) &= 0 \text{ if } \alpha = \alpha_{i-1} \\ &\leq 0 \text{ if } \alpha = 1 \end{cases}$$

Elastic state possible if $W(e(u)) \le \frac{3G_c}{8\ell}$, homogeneous states are unstable.

No construction of localized solutions (other than 1D).

Analysis of general case is lacking.

Loss of link with fracture, theoretical framework for evolution, uniqueness.

Fracture in heterogeneous materials

Goals:

Understand toughening mechanisms:

Deflection and meandering

Shielding / micro cracks

Pinning and bridging

Ritchie, '99

Compute "effective" fracture properties of heterogeneous materials.

Design materials with "extreme" fracture properties.

Mathematical view

Giacomini-Ponsiglione '06, Friedrich-Perugini-Solombrino '22, F-convergence of Griffith's fracture energy (static, then quasi-static evolution).

Elastic and fracture properties homogenize separately, toughening is

impossible

Toughness layering, M.I.L.:

$$G(t, l) = t^2 G(1, l)$$

$$G(1, l)/G_c(l) = \frac{1}{t^2}$$

Weak to tough transition

Evolution is unambiguous

$$G(1, l)/G_c(l) = \frac{1}{t^2}$$

Tough to weak transition

$$G(1, l)/G_c(l) = \frac{1}{t^2}$$

Tough to weak transition

Global minimality breaks causality

$$G(1, l)/G_c(l) = \frac{1}{t^2}$$

Tough to weak transition

Stability + energy balance

$$G(1, l)/G_c(l) = \frac{1}{t^2}$$

An empirical concept of effective toughness

Problem: Micro-geometry defined by \mathbf{A}^{ε} , G_c^{ε} , define G_c^{eff} such that $G_c^{\varepsilon} \to G_c^{\text{eff}}$ while accounting for causality, energy barriers, etc. "homogenization in trajectory space".

At the "microscopic" scale, evolution by stable critical points, discontinuous evolution, no energy balance: energy barriers.

At the macroscopic scale, periodic elastic energy release rate.

Proposed concept of effective toughness:

$$G_c^{\text{eff}} = \lim_{\varepsilon \to 0} \sup_{k\varepsilon \le l \le (k+1)\varepsilon} G(l)$$

Hossain et al, JMPS, 2014.

Toughness heterogeneities

Brach, Hossain, B, Bhattacharya JMPS '19

Elastic heterogeneities

Elastic heterogeneities

Toughening without pining or meandering

Hsueh, Avellar, B, Ravichandran, Bhattacharya, JMPS '18

Fracture diodes: directionally anisotropic toughness

Conclusions

Phase-field models have demonstrated their ability to handle crack propagation in a broad range of materials, loading (including complex multi-physics settings).

Numerical evidence that mode-I nucleation in compressible materials can be accounted for.

Open problems:

- Stress (not elastic energy density) nucleation criterion.
- Can nucleation be fully accounted for in a variational setting?
- Can nucleation and Griffith-like energies be reconciled?
 - Cohesive fracture? Ductile fracture? Dynamic fracture?
- Mathematical framework for evolution of meta-stable states. Alternative to Γ -convergence to connect phase-field models and fracture.
- Rigorous concept of effective toughness.

Collaborators:

- G.A. Francfort, J.-J. Marigo
- E. Tanné, T. Li, C. Maurini
- A. Kumar, O. Lopez-Pamies
- K. Yoshioka
- F. Dunkel, N.V. Tran, A. Mesgarnejad

Support:

- U.S. NSF, LA Board of regents
- AGC, Corning, Chevron
- Louisiana State University
- McMaster University

